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The merits of the various methods, used for the determination of relativistic energies, are dis-
cussed on the basis of numerical results. It is concluded that, at present, the perturbation approach,
based on the Pauli approximation of the Dirac-Breit equation, is more accurate (up to Z < 48) than
the variational approach. Furthermore it is expected that, in any case, the prediction of ionization
potentials and energy levels will be equally satisfactory by either method. Consequently, and
taking into account the importance of the correlation effects (not only because of the contribution
of the correlation energy but also because of their influence on the prediction of the hyperfine
structure), it is suggested that it may be worthwhile to direct more efforts towards multiconfigura-
tional Dirac-Breit-Pauli calculations.
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Introduction

The ultimate goal of quantum-mechanical calculations is the exact determina-
tion of the state energies, including the relativistic corrections and the contri-
butions due to the finite size of the nucleus, and the corresponding state functions.
Physical observables are predicted at the same time.

At present, such calculations would be based on the Breit generalization
of the Dirac equation. The Dirac-Breit equation constitutes, however, only an
approximation and, furthermore, the magnetic and retardation terms of the
Breit correction cannot be included in a variational treatment; their contribu-
tion must be evaluated, by a perturbation technique, as a first-order correction
(Bethe and Salpeter, [3]), although an approximate form of second-order per-
turbation theory has been used in intermediate-coupling calculations (see the
work of Condon and Shortley [4] and the discussion presented by Ermolaev
and Jones [5]).

Within the framework of the Hartree-Fock approximation, two approaches
exist for the determination of approximate values of the relativistic energies:

1. The Dirac-Breit-Hartree-Fock (v-DBHF) method consists of the deter-
mination of the relativistic functions by a Hartree-Fock scheme based on the
Dirac-Breit equation, from which the magnetic and retardation terms of the Breit
correction have been omitted; their contribution (Ez) should then be evaluated

* This work has been supported in part by the National Research Council of Canada.

** Permanent (and present) address: Institute of Physics, Nicholas Copernicus University, Torun,
Poland.



184 S. Fraga and J. Karwowski

[l

using the relativistic functions. (The designation “v” indicates that, except for Eg,
the relativistic corrections have been determined by a variational treatment.)

2. The Dirac-Breit-Pauli-Hartree-Fock (p-DBPHF) method involves the
determination of the corresponding non-relativistic Hartree-Fock functions,
which are then used for the evaluation of the contributions of the relativistic
corrections, as given in the Pauli approximation of the Dirac-Breit equation.
(The designation “p” indicates that the relativistic corrections have been deter-
mined by a perturbatlon technique.)

In addition, the finite size of the nucleus (as compared with the usual approxi-
mation of a point charge with infinite mass) should be taken into account
both in the expression of the nuclear potential and in the motion of the nucleus
(specific mass effect).

Although much work remains to be done at a lower level of sophistication
(especially regarding the evaluation of correlation energies), a trend has been
developing in recent years, with more and more efforts directed towards the
calculation of relativistic energies by the v-DBHF method. (A wealth of
references exists, but they are omitted here as they may be found in the review
works of Grant [16] and Ermolaev and Jones [6].) The present work is intended
as a justification of the p-DBPHF method.

Results and Discussion

The quantities considered in the present discussion are:

E{v-DBHF(fn)} - relativistic Hartree-Fock energy, evaluated by the v-DBHF method, with the
nuclear potential modified in order to take into account the finite size of the nuc-
leus; it does not include the contributions of the magnetic and retardation terms
of the Breit correction, the electron-nucleus interactions (other than the electro-
static attraction), or the specific mass effect;

E{v-DBHF(pn)} —same as above, but considering a point nucleus;

E{p-DBPHF(pn)} — relativistic Hartree-Fock energy, evaluated by the p-DBPHF method, con-
sidering a point nucleus; it includes the contributions of the magnetic and re-
tardation terms of the Breit correction, all the electron-nucleus interactions, and
the specific mass effect;

Eg — magnetic and retardation contributions from the Breit term; in the non-
relativistic limit it corresponds to the orbit-orbit and the electron spin-spin
contact interactions (Armstrong [1]);

Egy — specific mass effect;

AEg — lowering of the energy, by comparison with the value calculated in the
p-DBPHF method, obtained in the variational v-DBHF treatment;

AEy — contribution to the energy, by comparison with the result obtained within the

point nucleus approximation, resulting from proper consideration of the finite
size of the nucleus in the nuclear potential expression.
The values of E{v-DBHF(fn)} and E{v-DBHF(pn)} have been taken from the
work of Mann and Johnson [18] and Maly and Hussonnois [17], respectively,
and the values for E{p-DBPHF(pn)}, E; and Eg,, are those determined by Fraga
and coworkers [8—13] from non-relativistic Hartree-Fock functions.

Table 1 shows the corresponding values for the elements, from He to No,
with ground state closed-shell configurations. (In this connection it should be
mentioned that v-DBHF calculations have also been carried out for open-shell
configurations; however, the corresponding results are not considered here as
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they were obtained using the formulation developed by Grant [14, 15] for closed
shells.) In this Table the values of AE, and AE, have been approximated, re-
spectively, by -

AE, = E{p-DBPHF(pn)} — [E5 + E;,] — E{v-DBHF(pn)},
AEy = E{v-DBHF (fn)} — E {v-DBHF(pn)} .

The values of AEg, AEy, and (Ez+ Eg,,) may be used for a discussion of
the accuracy of the perturbational and variational methods. Inspection of
Table 1 shows that, for Z < 102, it is 4Ey <€ Ep + Eg,,, which indicates that there
is no justification in considering the effect of the finite size of the nucleus if
the contribution of the Breit term is not included. The values of AE, and AEy
can be used to estimate the order of magnitude of the relativistic correction
neglected in the DBPHF (pn) method; on the other hand, (Eg + Eg,,) plays the
same role for the DBHF method. As seen, up to Z~48,(AEp + AEy) <(Ep+ Egy);
that is, the error in E{v-DBHF(pn)} and E {v-DBHF (fn)} is larger than the error
in E{p-DBPHF(pn)}.

Therefore it must be concluded that the perturbation approach gives better
results for light atoms (up to Z~48) than the variational treatments, as carried
out until the present.

In addition it must be remembered that the neglect of correlation affects
both types of treatments. In this connection two points must be mentioned.
First of all it is known that for Z < 14 the correlation energy is greater than the
relativistic corrections; the importance of its consideration is evident from
Table 2. On the other hand it is also known (Armstrong [2] and Fraga and Malli
[7]) that correlation is extremely important in hyperfine structure calculations.

The prediction, within the p-DBPHF method, of ionization potentials (Fraga,
Saxena, and Karwowski [12]) and transitions (except when inner core electrons
are involved) should be comparable to that obtained by the other methods. This
assumption is based on the fact that past experience (Fraga and coworkers
[8—13]) has shown Ej to be essentially independent of ionization or excitation
(under the restriction mentioned above) and it is expected that AE, and AEj
will behave similarly.

It seems, therefore, that perhaps more efforts should be directed towards
multiconfigurational Dirac-Breit-Pauli calculations, in an effort to include
AE. and (Ep + Eg;,) rather than AEy.

Table 2. Correlation energies, A E. (in a.u.), for various atoms

Element z Total energy AE; Ep+ Egy AEg AEy
Experimental [19] Theoretical®

He 2 2.9034 2.8617 0.0417  0.0001 0.0 0.0
Be 4 14.6685 14.5752 0.0933 0.0007 0.0 0.0
Ne 10 129.0502 128.6757 0.3745 0.0162 0.0007  0.0001
A 18 5291121 528.5533 0.5588 0.1304 0.0194  0.0017

® Approximated from the values of Mann and Johnson [18] by correction with (Eg + Egy).
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